
TOAST Documentation
Release 2.3.4

Theodore Kisner, Reijo Keskitalo

Nov 20, 2019

Contents

1 Introduction 3
1.1 Support for Specific Experiments . 3

2 Installation 5
2.1 User Installation . 5
2.2 Developer Installation . 7
2.3 Testing the Installation . 10
2.4 Building the Documentation . 10

3 Data Model 11
3.1 Data Distribution . 23

4 Pipelines 27
4.1 Example: Simple Satellite Simulation . 27

5 Utilities 31
5.1 Environment Control . 31
5.2 Logging . 32
5.3 Vector Math Operations . 33
5.4 Random Number Generation . 33

6 Using TOAST at NERSC 35
6.1 Module Files . 35
6.2 Loading the Software . 35
6.3 Installing TOAST (Optional) . 35

7 Indices and tables 37

Index 39

i

ii

TOAST Documentation, Release 2.3.4

Contents:

Contents 1

TOAST Documentation, Release 2.3.4

2 Contents

CHAPTER 1

Introduction

TOAST is a software framework for simulating and processing timestream data collected by telescopes. Telescopes
which collect data as timestreams rather than images give us a unique set of analysis challenges. Detector data
usually contains noise which is correlated in time as well as sources of correlated signal from the instrument and
the environment. Large pieces of data must often be analyzed simultaneously to extract an estimate of the sky signal.
TOAST has evolved over several years. The current codebase contains an internal C++ library to allow for optimization
of some calculations, while the public interface is written in Python.

The TOAST framework contains:

• Tools for distributing data among many processes

• Tools for performing operations on the local pieces of the data

• Generic operators for common processing tasks (filtering, pointing expansion, map-making)

• Basic classes for performing I/O in a limited set of formats

• Well-defined interfaces for adding custom I/O classes and processing operators

The highest-level control of the workflow is done by the user, often by writing a small Python “pipeline” script (some
examples are included). Such pipeline scripts make use of TOAST functions for distributing data and then call built-in
or custom operators to process the timestream data.

1.1 Support for Specific Experiments

If you are a member of one of these projects:

• Planck

• LiteBIRD

• Simons Array

• Simons Observatory

• CMB-S4

3

https://en.wikipedia.org/wiki/Software_framework

TOAST Documentation, Release 2.3.4

Then there are additional software repositories you have access to that contain extra TOAST classes and scripts for
processing data from your experiment.

4 Chapter 1. Introduction

CHAPTER 2

Installation

TOAST is written in C++ and python3 and depends on several commonly available packages. It also has some optional
functionality that is only enabled if additional external packages are available. The best installation method will depend
on your specific needs. We try to clarify the different options below.

2.1 User Installation

If you are using TOAST to build simulation and analysis workflows, including mixing built-in functionality with your
own custom tools, then you can use of these methods to get started. If you want to hack on the TOAST package itself,
see the section Developer Installation.

If you want to use TOAST at NERSC, see Using TOAST at NERSC.

2.1.1 Conda Packages

The easiest way to install TOAST and all of its optional dependencies is to use the conda package manager. The conda-
forge ecosystem allows us to create packages that are built consistently with all their dependencies. We recommend
following the setup guidelines used by conda-forge, specifically:

1. Install a “miniconda” base system (not the full Anaconda distribution).

2. Set the conda-forge channel to be the top priority package source, with strict ordering if available.

3. Leave the base system (a.k.a. the “root” environment) with just the bare minimum of packages.

4. Always create a new environment (i.e. not the base one) when setting up a python stack for a particular purpose.
This allows you to upgrade the conda base system in a reliable way, and to wipe and recreate whole conda
environments whenever needed.

Here are the detailed steps of how you could do this from the UNIX shell, installing the base conda system to
${HOME}/conda. First download the installer. For OS X you would do:

5

https://conda-forge.org/docs/user/introduction.html#how-can-i-install-packages-from-conda-forge

TOAST Documentation, Release 2.3.4

curl -SL \
https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh \
-o miniconda.sh

For Linux you would do this:

curl -SL \
https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh \
-o miniconda.sh

Next we will run the installer. The install prefix should not exist previously:

bash miniconda.sh -b -p "${HOME}/conda"

Now load this conda “root” environment:

source ${HOME}/conda/etc/profile.d/conda.sh
conda activate

We are going to make sure to preferentially get packages from the conda-forge channel:

conda config --add channels conda-forge
conda config --set channel_priority strict

Next, we are going to create a conda environment for a particular purpose (installing TOAST). You can create as many
environments as you like and install different packages within them- they are independent. In this example, we will
call this environment “toast”, but you can call it anything:

conda create -y -n toast

Now we can activate our new (and mostly empty) toast environment:

conda activate toast

Finally, we can install the toast package. I recommend installing the MPICH version of TOAST. There is also a version
of TOAST without MPI, but most of the parallelism in TOAST comes from using MPI:

conda install toast=*=*mpich*

OR:

conda install toast=*=*nompi*

There is also an OpenMPI version of the package, but that is mainly intended for installing toast into environments
that also use / require OpenMPI. Assuming this is the only conda installation on your system, you can add the line
source ${HOME}/conda/etc/profile.d/conda.sh to your shell resource file (usually ~/.bashrc on
Linux or ~/.profile on OS X). You can read many articles on login shells versus non-login shells and decide
where to put this line for your specific use case.

Now you can always activate your toast environment with:

conda activate toast

And leave that environment with:

conda deactivate

6 Chapter 2. Installation

TOAST Documentation, Release 2.3.4

If you want to use other packages with TOAST (e.g. Jupyter Lab), then you can activate the toast environment and
install them with conda. See the conda documentation for more details on managing environments, installing packages,
etc.

2.1.2 Minimal Install with PIP

If you cannot or do not want to use the conda package manager, then it is possible to install a “minimal” version of
TOAST with pip. If you install TOAST this way, it will be missing support for MPI and atmospheric simulations.
Additionally, you must first ensure that you have a serial compiler installed and that a BLAS/LAPACK library is
available in the default compiler search paths. You should also install the FFTW package, either through your OS
package manager or manually. After doing those steps, you can do:

$> pip install https://github.com/hpc4cmb/toast/archive/2.3.5.tar.gz

Specify the URL to the version tarball you want to install (see the releases on the TOAST github page).

2.1.3 Something Else

If you have a custom install situation that is not met by the above solutions, then you should follow the instructions
below for a “Developer install”.

2.2 Developer Installation

Here we will discuss several specific system configurations that are known to work. The best one for you will depend
on your OS and preferences.

2.2.1 Ubuntu Linux

You can install all but one required TOAST dependency using packages provided by the OS. Note that this assumes a
recent version of ubuntu (tested on 19.04):

apt update
apt install \

cmake \
build-essential \
gfortran \
libopenblas-dev \
libmpich-dev \
liblapack-dev \
libfftw3-dev \
libsuitesparse-dev \
python3-dev \
libpython3-dev \
python3-scipy \
python3-matplotlib \
python3-healpy \
python3-astropy \
python3-pyephem

NOTE: if you are using another package on your system that requires OpenMPI, then you may get a conflict installing
libmpich-dev. In that case, just install libopenmpi-dev instead.

2.2. Developer Installation 7

TOAST Documentation, Release 2.3.4

Next, download a release of libaatm and install it. For example:

cd libaatm
mkdir build
cd build
cmake \

-DCMAKE_INSTALL_PREFIX=/usr/local \
..

make -j 4
sudo make install

You can also install it to the same prefix as TOAST or to a separate location for just the TOAST dependencies. If you
install it somewhere other than /usr/local then make sure it is in your environment search paths (see the “installing
TOAST” section).

You can also now install the optional dependencies:

• libconviqt for 4PI beam convolution.

• libmadam for optimized destriping mapmaking.

2.2.2 Other Linux

If you have a different distro or an older version of Ubuntu, you should try to install at least these packages with your
OS package manager:

gcc
g++
mpich or openmpi
lapack
fftw
suitesparse
python3
python3 development library (e.g. libpython3-dev)
virtualenv (e.g. python3-virtualenv)

The you can create a python3 virtualenv, activate it, and then use pip to install these packages:

pip install \
scipy \
matplotlib \
healpy \
astropy \
pyephem

Then install libaatm as discussed in the previous section.

2.2.3 Conda Isolated Environment

This is still a work in progress. Conda provides compilers as well as packages, but in order to use them we must isolate
everything from the surrounding OS. The obvious appeal is that we can then install all dependencies easily and just
build TOAST using the conda compilers. We will add more details here after more testing.

8 Chapter 2. Installation

https://github.com/hpc4cmb/libaatm/releases
https://github.com/hpc4cmb/libconviqt
https://github.com/hpc4cmb/libmadam

TOAST Documentation, Release 2.3.4

2.2.4 OS X with MacPorts

2.2.5 OS X with Homebrew

2.2.6 Full Custom Install with CMBENV

The cmbenv package can generate an install script that selectively compiles packages using specified compilers. This
allows you to “pick and choose” what packages are installed from the OS versus being built from source. See the
example configs in that package and the README. For example, there is an “ubuntu-19.04” config that gets everything
from OS packages but also compiles the optional dependencies like libconviqt and libmadam.

2.2.7 Installing TOAST

Decide where you want to install your development copy of TOAST. I recommend picking a standalone directory
somewhere. For this example, we will use `${HOME}/software/toast. This should NOT be the same location
as your git checkout.

We want to define a small shell function that will load this directory into our environment. You can put this function
in your shell resource file (~/.bashrc or ~/.profile):

load_toast () {
dir="${HOME}/software/toast"
export PATH="${dir}/bin:${PATH}"
export CPATH="${dir}/include:${CPATH}"
export LIBRARY_PATH="${dir}/lib:${LIBRARY_PATH}"
export LD_LIBRARY_PATH="${dir}/lib:${LD_LIBRARY_PATH}"
pysite=$(python3 --version 2>&1 | awk '{print $2}' | sed -e "s#\(.*\)\.\(.*\)\..*

→˓#\1.\2#")
export PYTHONPATH="${dir}/lib/python${pysite}/site-packages:${PYTHONPATH}"

}

When installing dependencies, you may have chosen to install libaatm, libconviqt, and libmadam into this same loca-
tion. If so, load this location into your search paths now, before installing TOAST:

load_toast

TOAST uses CMake to configure, build, and install both the compiled code and the python tools. Within the toast
git checkout, run the following commands:

mkdir -p build && cd build
cmake -DCMAKE_INSTALL_PREFIX=$HOME/software/toast ..
make -j 2 install

This will compile and install TOAST in the folder ~/software/toast. Now, every time you want to use toast,
just call the shell function:

load_toast

If you need to customize the way TOAST gets compiled, the following variables can be defined in the invocation to
cmake using the -D flag:

CMAKE_INSTALL_PREFIX Location where TOAST will be installed. (We used it in the example above.)

CMAKE_C_COMPILER Path to the C compiler

CMAKE_C_FLAGS Flags to be passed to the C compiler (e.g., -O3)

2.2. Developer Installation 9

https://github.com/hpc4cmb/cmbenv

TOAST Documentation, Release 2.3.4

CMAKE_CXX_COMPILER Path to the C++ compiler

CMAKE_CXX_FLAGS Flags to be passed to the C++ compiler

MPI_C_COMPILER Path to the MPI wrapper for the C compiler

MPI_CXX_COMPILER Path to the MPI wrapper for the C++ compiler

PYTHON_EXECUTABLE Path to the Python interpreter

BLAS_LIBRARIES Full path to the BLAS dynamical library

LAPACK_LIBRARIES Full path to the LAPACK dynamical library

FFTW_ROOT The install prefix of the FFTW package

SUITESPARSE_INCLUDE_DIR_HINTS The include directory for SuiteSparse headers

SUITESPARSE_LIBRARY_DIR_HINTS The directory containing SuiteSparse libraries

See the top-level “platforms” directory for other examples of running CMake.

2.3 Testing the Installation

After installation, you can run both the compiled and python unit tests. These tests will create an output directory
named out in your current working directory:

python -c "import toast.tests; toast.tests.run()"

2.4 Building the Documentation

You will need the two Python packages sphinx and sphinx_rtd_theme, which can be installed using pip or
conda (if you are running Anaconda):

cd docs && make clean && make html

The documentation will be available in docs/_build/html.

10 Chapter 2. Installation

CHAPTER 3

Data Model

TOAST works with data organized into observations. Each observation is independent of any other observation.
An observation consists of co-sampled detectors for some span of time. The intrinsic detector noise is assumed to
be stationary within an observation. Typically there are other quantities which are constant for an observation (e.g.
elevation, weather conditions, satellite procession axis, etc).

An observation is just a dictionary with at least one member (“tod”) which is an instance of a class that derives from
the toast.TOD base class. Every experiment will have their own TOD derived classes, but TOAST includes some
built-in ones as well.

The inputs to a TOD class constructor are at least:

1. The detector names for the observation.

2. The number of samples in the observation.

3. The geometric offset of the detectors from the boresight.

4. Information about how detectors and samples are distributed among processes.

class toast.tod.TOD(mpicomm, detectors, samples, detindx=None, detranks=1, detbreaks=None,
sampsizes=None, sampbreaks=None, meta=None)

Base class for an object that provides detector pointing and timestreams for a single observation.

This class provides high-level functions that are common to all derived classes. It also defines the internal
methods that should be overridden by all derived classes. These internal methods throw an exception if they are
called. A TOD base class should never be directly instantiated.

Parameters

• mpicomm (mpi4py.MPI.Comm) – the MPI communicator over which the data is dis-
tributed, or None.

• detectors (list) – The list of detector names.

• samples (int) – The total number of samples.

• detindx (dict) – the detector indices for use in simulations. Default is { x[0] : x[1] for
x in zip(detectors, range(len(detectors))) }.

11

TOAST Documentation, Release 2.3.4

• detranks (int) – The dimension of the process grid in the detector direction. If not
None, the MPI communicator size must be evenly divisible by this number.

• detbreaks (list) – Optional list of hard breaks in the detector distribution.

• sampsizes (list) – Optional list of sample chunk sizes which cannot be split.

• sampbreaks (list) – Optional list of hard breaks in the sample distribution.

• meta (dict) – Optional dictionary of metadata properties.

COMMON_FLAG_NAME = 'common_flags'
Default cache name for common flags.

FLAG_NAME = 'flags'
Default cache name for flags.

HWP_ANGLE_NAME = 'hwp_angle'
Default cache name for HWP angle.

POINTING_NAME = 'quat'
Default cache name for pointing quaternions.

POSITION_NAME = 'position'
Default cache name for position.

SIGNAL_NAME = 'signal'
Default cache name for signal.

TIMESTAMP_NAME = 'timestamps'
Default cache name for timestamps.

VELOCITY_NAME = 'velocity'
Default cache name for velociyt.

detectors
The total list of detectors.

Type (list)

detindx
The detector indices.

Type (dict)

detoffset()
Return dictionary of detector quaternions.

This returns a dictionary with the detector names as the keys and the values are 4-element numpy arrays
containing the quaternion offset from the boresight.

Parameters None –

Returns (dict): the dictionary of quaternions.

dist_chunks
this is a list of 2-tuples, one for each column of the process grid. Each element of the list is the same as
the information returned by the “local_chunks” member for a given process column.

Type (list)

dist_samples
This is a list of 2-tuples, with one element per column of the process grid. Each tuple is the same informa-
tion returned by the “local_samples” member for the corresponding process grid column rank.

12 Chapter 3. Data Model

TOAST Documentation, Release 2.3.4

Type (list)

grid_comm_col
a communicator across all detectors in the same column of the process grid (or None).

Type (mpi4py.MPI.Comm)

grid_comm_row
a communicator across all detectors in the same row of the process grid (or None).

Type (mpi4py.MPI.Comm)

grid_ranks
the ranks of this process in the (detector, sample) directions.

Type (tuple)

grid_size
the dimensions of the process grid in (detector, sample) directions.

Type (tuple)

local_chunks
the first element of the tuple is the index of the first chunk assigned to this process (i.e. the index in the list
given by the “total_chunks” member). The second element of the tuple is the number of chunks assigned
to this process.

Type (2-tuple)

local_common_flags(name=None, **kwargs)
Locally stored common flags.

Parameters name (str) – Optional cache key to use.

Returns A cache reference to a common flag vector. If ‘name’ is None a default name
‘common_flags’ is used and the vector may be constructed and cached using the
‘read_common_flags’ method. If ‘name’ is given, then the flags must already be cached.

local_dets
The detectors assigned to this process.

Type (list)

local_flags(det, name=None, **kwargs)
Locally stored flags.

Parameters

• det (str) – Name of the detector.

• name (str) – Optional cache key to use.

Returns A cache reference to a flag vector. If ‘name’ is None a default name ‘flags’ is used and
the vector may be constructed and cached using the ‘read_flags’ method. If ‘name’ is given,
then the flags must already be cached.

local_hwp_angle(name=None, **kwargs)
Locally stored half-wave plate angle.

Parameters name (str) – Optional cache key to use.

Returns A cache reference to a hwp angle vector. If ‘name’ is None a default name ‘hwp_angle’
is used and the vector may be constructed and cached using the ‘read_hwp_angle’ method.
If ‘name’ is given, then the angles must already be cached.

13

TOAST Documentation, Release 2.3.4

local_intervals(intervals)
Translate observation-wide intervals into local sample indices.

local_pointing(det, name=None, **kwargs)
Locally stored pointing.

Parameters

• det (str) – Name of the detector.

• name (str) – Optional cache key to use.

Returns A cache reference to a pointing array. If ‘name’ is None a default name ‘quat’ is used
and the array may be constructed and cached using the ‘read_pntg’ method. If ‘name’ is
given, then the pointing must already be cached.

local_position(name=None, **kwargs)
Locally stored position.

Parameters name (str) – Optional cache key to use.

Returns A cache reference to a position array. If ‘name’ is None a default name ‘position’
is used and the array may be constructed and cached using the ‘read_position’ method. If
‘name’ is given, then the position must already be cached.

local_samples
The first element of the tuple is the first global sample assigned to this process. The second element of the
tuple is the number of samples assigned to this process.

Type (2-tuple)

local_signal(det, name=None, **kwargs)
Locally stored signal.

Parameters

• det (str) – Name of the detector.

• name (str) – Optional cache key to use.

Returns A cache reference to a signal vector. If ‘name’ is None a default name ‘signal’ is used
and the vector may be constructed and cached using the ‘read’ method. If ‘name’ is given,
then the signal must already be cached.

local_times(name=None, **kwargs)
Timestamps covering locally stored data.

Parameters name (str) – Optional cache key to use.

Returns A cache reference to a timestamp vector. If ‘name’ is None a default name ‘timestamps’
is used and the vector may be constructed and cached using the ‘read_times’ method. If
‘name’ is given, then the times must already be cached.

local_velocity(name=None, **kwargs)
Locally stored velocity.

Parameters name (str) – Optional cache key to use.

Returns A cache reference to a velocity array. If ‘name’ is None a default name ‘velocity’
is used and the array may be constructed and cached using the ‘read_velocity’ method. If
‘name’ is given, then the velocity must already be cached.

mpicomm
the communicator assigned to this TOD.

14 Chapter 3. Data Model

TOAST Documentation, Release 2.3.4

Type (mpi4py.MPI.Comm)

read(detector=None, local_start=0, n=0, **kwargs)
Read detector data.

This returns the timestream data for a single detector.

Parameters

• detector (str) – the name of the detector.

• local_start (int) – the sample offset relative to the first locally assigned sample.

• n (int) – the number of samples to read. If zero, read to end.

Returns An array containing the data.

read_boresight(local_start=0, n=0, **kwargs)
Read boresight quaternion pointing.

This returns the pointing of the boresight in quaternions.

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• n (int) – the number of samples to read. If zero, read to end.

Returns A 2D array of shape (n, 4)

read_boresight_azel(local_start=0, n=0, **kwargs)
Read boresight Azimuth / Elevation quaternion pointing.

This returns the pointing of the boresight in the horizontal coordinate system, if it exists.

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• n (int) – the number of samples to read. If zero, read to end.

Returns A 2D array of shape (n, 4)

Raises NotImplementedError – if the telescope is not on the Earth.

read_common_flags(local_start=0, n=0, **kwargs)
Read common flags.

This reads the common set of flags that should be applied to all detectors.

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• n (int) – the number of samples to read. If zero, read to end.

Returns a numpy array containing the flags.

Return type (array)

read_flags(detector=None, local_start=0, n=0, **kwargs)
Read detector flags.

This returns the detector-specific flags.

Parameters

• detector (str) – the name of the detector.

• local_start (int) – the sample offset relative to the first locally assigned sample.

15

TOAST Documentation, Release 2.3.4

• n (int) – the number of samples to read. If zero, read to end.

Returns An array containing the detector flags.

read_hwp_angle(local_start=0, n=0, **kwargs)
Read half-wave plate angle

This reads the common HWP angle that should be applied to all detectors.

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• n (int) – the number of samples to read. If zero, read to end.

Returns

a numpy array containing the angles or None if the angle is not defined.

Return type (array)

read_pntg(detector=None, local_start=0, n=0, **kwargs)
Read detector quaternion pointing.

This returns the pointing for a single detector in quaternions.

Parameters

• detector (str) – the name of the detector.

• local_start (int) – the sample offset relative to the first locally assigned sample.

• n (int) – the number of samples to read. If zero, read to end.

Returns A 2D array of shape (n, 4)

read_position(local_start=0, n=0, **kwargs)
Read telescope position.

This reads the telescope position in solar system barycenter coordinates (in Kilometers).

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• n (int) – the number of samples to read. If zero, read to end.

Returns

a 2D numpy array containing the x,y,z coordinates at each sample.

Return type (array)

read_times(local_start=0, n=0, **kwargs)
Read timestamps.

This reads the common set of timestamps that apply to all detectors in the TOD.

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• n (int) – the number of samples to read. If zero, read to end.

Returns a numpy array containing the timestamps.

Return type (array)

16 Chapter 3. Data Model

TOAST Documentation, Release 2.3.4

read_velocity(local_start=0, n=0, **kwargs)
Read telescope velocity.

This reads the telescope velocity in solar system barycenter coordinates (in Kilometers/s).

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• n (int) – the number of samples to read. If zero, read to end.

Returns

a 2D numpy array containing the x,y,z velocity components at each sample.

Return type (array)

total_chunks
the full list of sample chunk sizes that were used in the data distribution.

Type (list)

total_samples
the total number of samples in this TOD.

Type (int)

write(detector=None, local_start=0, data=None, **kwargs)
Write detector data.

This writes the detector data.

Parameters

• detector (str) – the name of the detector.

• local_start (int) – the sample offset relative to the first locally assigned sample.

• data (array) – the data array.

write_boresight(local_start=0, data=None, **kwargs)
Write boresight quaternion pointing.

This writes the quaternion pointing for the boresight.

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• data (array) – 2D array of quaternions with shape[1] == 4.

write_boresight_azel(local_start=0, data=None, **kwargs)
Write boresight Azimuth / Elevation quaternion pointing.

This writes the quaternion pointing for the boresight in the horizontal coordinate system, if it exists.

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• data (array) – 2D array of quaternions with shape[1] == 4.

Raises RuntimeError or AttributeError – if the telescope is not on the Earth.

write_common_flags(local_start=0, flags=None, **kwargs)
Write common flags.

This writes the common set of flags that should be applied to all detectors.

17

TOAST Documentation, Release 2.3.4

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• flags (array) – array containing the flags to write.

write_flags(detector=None, local_start=0, flags=None, **kwargs)
Write detector flags.

This writes the detector-specific flags.

Parameters

• detector (str) – the name of the detector.

• local_start (int) – the sample offset relative to the first locally assigned sample.

• flags (array) – the detector flags.

write_hwp_angle(local_start=0, hwpangle=None, **kwargs)
Write half-wave plate angle

This writes the common HWP angle that should be applied to all detectors.

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• flags (array) – array containing the flags to write.

write_pntg(detector=None, local_start=0, data=None, **kwargs)
Write detector quaternion pointing.

This writes the quaternion pointing for a single detector.

Parameters

• detector (str) – the name of the detector.

• local_start (int) – the sample offset relative to the first locally assigned sample.

• data (array) – 2D array of quaternions with shape[1] == 4.

write_position(local_start=0, pos=None, **kwargs)
Write telescope position.

This writes the telescope position in solar system barycenter coordinates (in Kilometers).

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• pos (array) – the 2D array of x,y,z coordinates at each sample.

write_times(local_start=0, stamps=None, **kwargs)
Write timestamps.

This writes the common set of timestamps that apply to all detectors in the TOD.

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• stamps (array) – the array of timestamps to write.

write_velocity(local_start=0, vel=None, **kwargs)
Write telescope velocity.

This writes the telescope velocity in solar system barycenter coordinates (in Kilometers/s).

18 Chapter 3. Data Model

TOAST Documentation, Release 2.3.4

Parameters

• local_start (int) – the sample offset relative to the first locally assigned sample.

• vel (array) – the 2D array of x,y,z velocity components at each sample.

The TOD class can act as a storage container for different “flavors” of timestreams as well as a source and sink for the
observation data (with the read_*() and write_*() methods). The TOD base class has one member which is a Cache
class.

class toast.cache.Cache(pymem=False)
Data cache with explicit memory management.

This class acts as a dictionary of named arrays. Each array may be multi-dimensional.

Parameters pymem (bool) – if True, use python memory rather than external allocations in C.
Only used for testing.

add_alias(alias, name)
Add an alias to a name that already exists in the cache.

Parameters

• alias (str) – alias to create

• name (str) – an existing key in the cache

Returns None

aliases()
Return a dictionary of all the aliases to keys in the cache.

Returns Dictionary of aliases.

Return type (dict)

clear(pattern=None)
Clear one or more buffers.

Parameters pattern (str) – a regular expression to match against the buffer names when
determining what should be cleared. If None, then all buffers are cleared.

Returns None

create(name, type, shape)
Create a named data buffer of the given type and shape.

Parameters

• name (str) – the name to assign to the buffer.

• type (numpy.dtype) – one of the supported numpy types.

• shape (tuple) – a tuple containing the shape of the buffer.

Returns a reference to the allocated array.

Return type (array)

destroy(name)
Deallocate the specified buffer.

Only call this if all numpy arrays that reference the memory are out of use. If the specified name is an
alias, then the alias is simply deleted. If the specified name is an actual buffer, then all aliases pointing to
that buffer are also deleted.

Parameters name (str) – the name of the buffer or alias to destroy.

19

TOAST Documentation, Release 2.3.4

Returns None

exists(name)
Check whether a buffer exists.

Parameters name (str) – the name of the buffer to search for.

Returns True if a buffer or alias exists with the given name.

Return type (bool)

keys()
Return a list of all the keys in the cache.

Returns List of key strings.

Return type (list)

put(name, data, replace=False)
Create a named data buffer to hold the provided data.

If replace is True, existing buffer of the same name is first destroyed. If replace is True and the name is an
alias, it is promoted to a new data buffer.

Parameters

• name (str) – the name to assign to the buffer.

• data (numpy.ndarray) – Numpy array

• replace (bool) – Overwrite any existing keys

Returns a numpy array wrapping the raw data buffer.

Return type (array)

reference(name)
Return a numpy array pointing to the buffer.

The returned array will wrap a pointer to the raw buffer, but will not claim ownership. When the numpy
array is garbage collected, it will NOT attempt to free the memory (you must manually use the destroy
method).

Parameters name (str) – the name of the buffer to return.

Returns a numpy array wrapping the raw data buffer.

Return type (array)

report(silent=False)
Report memory usage.

Parameters silent (bool) – Count and return the memory without printing.

Returns Amount of allocated memory in bytes

Return type (int)

This class looks like a dictionary of numpy arrays, but the memory is allocated outside of Python, which means it can
be explicitly managed / freed. This cache member is where alternate flavors of the timestream data are stored.

Each observation can also have a noise model associated with it. An instance of a Noise class (or derived class)
describes the noise properties for all detectors in the observation.

class toast.tod.Noise(*, detectors, freqs, psds, mixmatrix=None, indices=None)
Noise objects act as containers for noise PSDs.

Noise is a base class for an object that describes the noise properties of all detectors for a single observation.

20 Chapter 3. Data Model

TOAST Documentation, Release 2.3.4

Parameters

• detectors (list) – Names of detectors.

• freqs (dict) – Dictionary of arrays of frequencies for psds.

• psds (dict) – Dictionary of arrays which contain the PSD values for each detector or
mixmatrix key.

• mixmatrix (dict) – Mixing matrix describing how the PSDs should be combined for
detector noise. If provided, must contain entries for every detector, and every key specified
for a detector must be defined in freqs and psds.

• indices (dict) – Integer index for every PSD, useful for generating indepedendent and
repeateable noise realizations. If absent, runnign indices will be assigned and provided.

detectors
List of detector names

Type list

keys
List of PSD names

Type list

Raises

• KeyError – If freqs, psds, mixmatrix or indices do not include all relevant entries.

• ValueError – If vector lengths in freqs and psds do not match.

detectors
list of strings containing the detector names.

Type (list)

freq(key)
Get the frequencies corresponding to key.

Parameters key (str) – Detector name or mixing matrix key.

Returns Frequency bins that are used for the PSD.

Return type (array)

index(key)
Return the PSD index for key

Parameters key (std) – Detector name or mixing matrix key.

Returns PSD index.

Return type index (int)

keys
list of strings containing the PSD names.

Type (list)

multiply_invntt(key, data)
Filter the data with inverse noise covariance.

multiply_ntt(key, data)
Filter the data with noise covariance.

21

TOAST Documentation, Release 2.3.4

psd(key)
Get the PSD corresponding to key.

Parameters key (str) – Detector name or mixing matrix key.

Returns PSD matching the key.

Return type (array)

rate(key)
Get the sample rate for key.

Parameters key (str) – the detector name or mixing matrix key.

Returns the sample rate in Hz.

Return type (float)

weight(det, key)
Return the mixing weight for noise key in det.

Parameters

• det (str) – Detector name

• key (std) – Mixing matrix key.

Returns Mixing matrix weight

Return type weight (float)

The data used by a TOAST workflow consists of a list of observations, and is encapsulated by the toast.Data class.

class toast.dist.Data(comm=<toast.Comm World MPI communicator = None World MPI size = 1
World MPI rank = 0 Group MPI communicator = None Group MPI size = 1
Group MPI rank = 0 Rank MPI communicator = None >)

Class which represents distributed data

A Data object contains a list of observations assigned to each process group in the Comm.

Parameters comm (toast.Comm) – the toast Comm class for distributing the data.

clear()
Clear the list of observations.

comm
The toast.Comm over which the data is distributed.

info(handle=None, flag_mask=255, common_flag_mask=255, intervals=None)
Print information about the distributed data.

Information is written to the specified file handle. Only the rank 0 process writes. Optional flag masks are
used when computing the number of good samples.

Parameters

• handle (descriptor) – file descriptor supporting the write() method. If None, use
print().

• flag_mask (int) – bit mask to use when computing the number of good detector sam-
ples.

• common_flag_mask (int) – bit mask to use when computing the number of good
telescope pointings.

• intervals (str) – optional name of an intervals object to print from each observation.

Returns None

22 Chapter 3. Data Model

TOAST Documentation, Release 2.3.4

obs = None
The list of observations.

split(key)
Split the Data object.

Split the Data object based on the value of key in the observation dictionary.

Parameters key (str) – Observation key to use.

Returns List of 2-tuples of the form (value, data)

If you are running with a single process, that process has all observations and all data within each observation locally
available. If you are running with more than one process, the data with be distributed across processes.

3.1 Data Distribution

Although you can use TOAST without MPI, the package is designed for data that is distributed across many processes.
When passing the data through a toast workflow, the data is divided up among processes based on the details of the
toast.Comm class that is used and also the shape of the process grid in each observation.

A toast.Comm instance takes the global number of processes available (MPI.COMM_WORLD) and divides them into
groups. Each process group is assigned one or more observations. Since observations are independent, this means that
different groups can be independently working on separate observations in parallel. It also means that inter-process
communication needed when working on a single observation can occur with a smaller set of processes.

class toast.mpi.Comm(world=None, groupsize=0)
Class which represents a two-level hierarchy of MPI communicators.

A Comm object splits the full set of processes into groups of size “group”. If group_size does not divide evenly
into the size of the given communicator, then those processes remain idle.

A Comm object stores three MPI communicators: The “world” communicator given here, which contains all
processes to consider, a “group” communicator (one per group), and a “rank” communicator which contains the
processes with the same group-rank across all groups.

If MPI is not enabled, then all communicators are set to None.

Parameters

• world (mpi4py.MPI.Comm) – the MPI communicator containing all processes.

• group (int) – the size of each process group.

comm_group
The communicator shared by processes within this group.

comm_rank
The communicator shared by processes with the same group_rank.

comm_world
The world communicator.

group
The group containing this process.

group_rank
The rank of this process in the group communicator.

group_size
The size of the group containing this process.

3.1. Data Distribution 23

TOAST Documentation, Release 2.3.4

ngroups
The number of process groups.

world_rank
The rank of this process in the world communicator.

world_size
The size of the world communicator.

Just to reiterate, if your toast.Comm has multiple process groups, then each group will have an independent list of
observations in toast.Data.obs.

What about the data within an observation? A single observation is owned by exactly one of the process groups. The
MPI communicator passed to the TOD constructor is the group communicator. Every process in the group will store
some piece of the observation data. The division of data within an observation is controlled by the detranks option
to the TOD constructor. This option defines the dimension of the rectangular “process grid” along the detector (as
opposed to time) direction. Common values of detranks are:

• “1” (processes in the group have all detectors for some slice of time)

• Size of the group communicator (processes in the group have some of the detectors for the whole time range of
the observation)

The detranks parameter must divide evenly into the number of processes in the group communicator.

As a concrete example, imagine that MPI.COMM_WORLD has 24 processes. We split this into 4 groups of 6 proce-
sess. There are 6 observations of varying lengths and every group has one or 2 observations. Here is a picture of what
data each process would have. The global process number is shown as well as the rank within the group:

24 Chapter 3. Data Model

TOAST Documentation, Release 2.3.4

In either case the full dataset is divided into one or more observations, and each observation has one TOD object (and
optionally other objects that describe the noise, valid data intervals, etc). The toast “Comm” class has two levels of
MPI communicators that can be used to divide many observations between whole groups of processes. In practice this
is not always needed, and the default construction of the Comm object just results in one group with all processes.

3.1. Data Distribution 25

TOAST Documentation, Release 2.3.4

26 Chapter 3. Data Model

CHAPTER 4

Pipelines

TOAST workflows are usually called “pipelines” and consist of a toast.Data object that is passed through one or
more “operators”:

class toast.Operator
Base class for an operator that acts on collections of observations.

An operator takes as input a toast.dist.Data object and returns a new instance of the same size. For each obser-
vation in the distributed data, an operator may pass some data types forward unchanged, or it may replace or
modify data.

Parameters None –

There are very few restrictions on an “operator” class. It can have arbitrary constructor arguments and must define an
exec() method which takes a toast.Data instance.

Each operator might take many arguments. There are helper functions in toast.pipeline_tools that can be used to create
an operator in a pipeline. Currently these helper functions add arguments to argparse for control at the command line.
In the future, we intend to support loading operator configuration from other config file formats.

4.1 Example: Simple Satellite Simulation

TOAST includes several “generic” pipelines that simulate some fake data and then run some operators on that data.
One of these is installed as toast_satellite_sim.py. There is some “set up” in the top of the script, but if we remove the
timing code then the main() looks like this:

def main():
env = Environment.get()
log = Logger.get()

mpiworld, procs, rank, comm = pipeline_tools.get_comm()
args, comm, groupsize = parse_arguments(comm, procs)

Parse options

(continues on next page)

27

TOAST Documentation, Release 2.3.4

(continued from previous page)

if comm.world_rank == 0:
os.makedirs(args.outdir, exist_ok=True)

focalplane, gain, detweights = load_focalplane(args, comm)

data = create_observations(args, comm, focalplane, groupsize)

pipeline_tools.expand_pointing(args, comm, data)

signalname = None
skyname = pipeline_tools.simulate_sky_signal(

args, comm, data, [focalplane], "signal"
)
if skyname is not None:

signalname = skyname

skyname = pipeline_tools.apply_conviqt(args, comm, data, "signal")
if skyname is not None:

signalname = skyname

diponame = pipeline_tools.simulate_dipole(args, comm, data, "signal")
if diponame is not None:

signalname = diponame

Mapmaking.

if not args.use_madam:
if comm.world_rank == 0:

log.info("Not using Madam, will only make a binned map")

npp, zmap = pipeline_tools.init_binner(args, comm, data, detweights)

Loop over Monte Carlos

firstmc = args.MC_start
nmc = args.MC_count

for mc in range(firstmc, firstmc + nmc):
outpath = os.path.join(args.outdir, "mc_{:03d}".format(mc))

pipeline_tools.simulate_noise(
args, comm, data, mc, "tot_signal", overwrite=True

)

add sky signal
pipeline_tools.add_signal(args, comm, data, "tot_signal", signalname)

if gain is not None:
op_apply_gain = OpApplyGain(gain, name="tot_signal")
op_apply_gain.exec(data)

if mc == firstmc:
For the first realization, optionally export the
timestream data. If we had observation intervals defined,
we could pass "use_interval=True" to the export operators,
which would ensure breaks in the exported data at

(continues on next page)

28 Chapter 4. Pipelines

TOAST Documentation, Release 2.3.4

(continued from previous page)

acceptable places.
pipeline_tools.output_tidas(args, comm, data, "tot_signal")
pipeline_tools.output_spt3g(args, comm, data, "tot_signal")

pipeline_tools.apply_binner(
args, comm, data, npp, zmap, detweights, outpath, "tot_signal"

)

else:

Initialize madam parameters

madampars = pipeline_tools.setup_madam(args)

Loop over Monte Carlos

firstmc = args.MC_start
nmc = args.MC_count

for mc in range(firstmc, firstmc + nmc):
create output directory for this realization
outpath = os.path.join(args.outdir, "mc_{:03d}".format(mc))

pipeline_tools.simulate_noise(
args, comm, data, mc, "tot_signal", overwrite=True

)

add sky signal
pipeline_tools.add_signal(args, comm, data, "tot_signal", signalname)

if gain is not None:
op_apply_gain = OpApplyGain(gain, name="tot_signal")
op_apply_gain.exec(data)

pipeline_tools.apply_madam(
args, comm, data, madampars, outpath, detweights, "tot_signal"

)

if comm.comm_world is not None:
comm.comm_world.barrier()

4.1. Example: Simple Satellite Simulation 29

TOAST Documentation, Release 2.3.4

30 Chapter 4. Pipelines

CHAPTER 5

Utilities

TOAST contains a variety of utilities for controlling the runtime environment, logging, timing, streamed random
number generation, quaternion operations, FFTs, and special function evaluation. In some cases these utilities provide
a common interface to compile-time selected vendor math libraries.

5.1 Environment Control

The run-time behavior of the TOAST package can be controlled by the manipulation of several environment variables.
The current configuration can also be queried.

class toast.utils.Environment
Global runtime environment.

This singleton class provides a unified place to parse environment variables at runtime and to change global
settings that impact the overall package.

current_threads(self: toast._libtoast.Environment)→ int
Return the current threading concurrency in use.

function_timers(self: toast._libtoast.Environment)→ bool
Return True if function timing has been enabled.

get()→ toast._libtoast.Environment
Get a handle to the global environment class.

log_level(self: toast._libtoast.Environment)→ str
Return the string of the current Logging level.

max_threads(self: toast._libtoast.Environment)→ int
Returns the maximum number of threads used by compiled code.

set_log_level(self: toast._libtoast.Environment, level: str)→ None
Set the Logging level.

Parameters level (str) – one of DEBUG, INFO, WARNING, ERROR or CRITICAL.

31

TOAST Documentation, Release 2.3.4

Returns None

set_threads(self: toast._libtoast.Environment, nthread: int)→ None
Set the number of threads in use.

Parameters nthread (int) – The number of threads to use.

Returns None

signals(self: toast._libtoast.Environment)→ List[str]
Return a list of the currently available signals.

tod_buffer_length(self: toast._libtoast.Environment)→ int
Returns the number of samples to buffer for TOD operations.

use_mpi(self: toast._libtoast.Environment)→ bool
Return True if TOAST was compiled with MPI support and MPI is supported in the current runtime
environment.

version(self: toast._libtoast.Environment)→ str
Return the current source code version string.

5.2 Logging

Although python provides logging facilities, those are not accessible to C++. The logging class provided in TOAST
is usable from within the compiled libtoast code and also from python, and uses logging level independent from the
builtin python logger.

class toast.utils.Logger
Simple Logging class.

This class mimics the python logger in C++. The log level is controlled by the TOAST_LOGLEVEL environ-
ment variable. Valid levels are DEBUG, INFO, WARNING, ERROR and CRITICAL. The default is INFO.

critical(self: toast._libtoast.Logger, msg: str)→ None
Print a CRITICAL level message.

Parameters msg (str) – The message to print.

Returns None

debug(self: toast._libtoast.Logger, msg: str)→ None
Print a DEBUG level message.

Parameters msg (str) – The message to print.

Returns None

error(self: toast._libtoast.Logger, msg: str)→ None
Print an ERROR level message.

Parameters msg (str) – The message to print.

Returns None

get()→ toast._libtoast.Logger
Get a handle to the global logger.

info(self: toast._libtoast.Logger, msg: str)→ None
Print an INFO level message.

Parameters msg (str) – The message to print.

32 Chapter 5. Utilities

TOAST Documentation, Release 2.3.4

Returns None

warning(self: toast._libtoast.Logger, msg: str)→ None
Print a WARNING level message.

Parameters msg (str) – The message to print.

Returns None

5.3 Vector Math Operations

The following functions . . .

toast.utils.vsin(in: buffer, out: buffer)→ None
Compute the Sine for an array of float64 values.

The results are stored in the output buffer. To guarantee SIMD vectorization, the input and output arrays should
be aligned (i.e. use an AlignedF64).

Parameters

• in (array_like) – 1D array of float64 values.

• out (array_like) – 1D array of float64 values.

Returns None

5.4 Random Number Generation

The following functions . . .

toast._libtoast.rng_dist_uint64(key1: int, key2: int, counter1: int, counter2: int, data: buffer)
→ None

Generate random unsigned 64bit integers.

The provided input array is populated with values. The dtype of the input array should be compatible with
unsigned 64bit integers. To guarantee SIMD vectorization, the input array should be aligned (i.e. use an
AlignedU64).

Parameters

• key1 (uint64) – The first element of the key.

• key2 (uint64) – The second element of the key.

• counter1 (uint64) – The first element of the counter.

• counter2 (uint64) – The second element of the counter. This is effectively the sample
index in the stream defined by the other 3 values.

• data (array) – The array to populate.

Returns None.

5.3. Vector Math Operations 33

TOAST Documentation, Release 2.3.4

34 Chapter 5. Utilities

CHAPTER 6

Using TOAST at NERSC

A recent version of TOAST is already installed at NERSC, along with all necessary dependencies. You can use this
installation directly, or use it as the basis for your own development.

6.1 Module Files

To get access to the needed module files, add the machine-specific module file location to your search path:

module use /global/common/software/cmb/${NERSC_HOST}/default/modulefiles

The default part of this path is a symlink to the latest stable installation. There are usually several older versions kept
here as well.

You can safely put the above line in your ~/.bashrc.ext inside the section for cori. It does not actually load anything
into your environment.

6.2 Loading the Software

To load the software do the following:

module load cmbenv source cmbenv

Note that the “source” command above is not “reversible” like normal module operations. This is required in order
to activate the underlying conda environment. After running the above commands, TOAST and many other common
software tools will be in your environment, including a Python3 stack.

6.3 Installing TOAST (Optional)

The cmbenv stack contains a recent version of TOAST, but if you want to build your own copy then you can use the
cmbenv stack as a starting point. Here are the steps:

35

TOAST Documentation, Release 2.3.4

1. Decide on the installation location. You should install software either to one of the project software spaces in
/global/common/software or in your home directory. If you plan on using this installation for large parallel jobs,
you should install to /global/common/software.

2. Load the cmbenv stack.

3. Go into your git checkout of TOAST and make a build directory:

cd toast mkdir build cd build

4. Use the cori-intel platform file to build TOAST and install:

../platforms/cori-intel.sh -DCMAKE_INSTALL_PREFIX=/path/to/somewhere make -j 4 install

5. Set up a shell function in ~/.bashrc.ext to load this into your environment search paths before the cmbenv stack:

load_toast () { dir=/path/to/your/install export PATH=”${dir}/bin:${PATH}” pysite=$(python3 –version 2>&1
| awk ‘{print $2}’ | sed -e “s#(.*).(.*)..*#1.2#”) export PYTHONPATH=”${dir}/lib/python${pysite}/site-
packages:${PYTHONPATH}”

Definition list ends without a blank line; unexpected unindent.

}

Now whenever you want to override the cmbenv TOAST installation you can just do:

load_toast

#intervals.rst #noise.rst #pointing.rst #sim.rst #maptools.rst #timing.rst #dev.rst

36 Chapter 6. Using TOAST at NERSC

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

37

TOAST Documentation, Release 2.3.4

38 Chapter 7. Indices and tables

Index

A
add_alias() (toast.cache.Cache method), 19
aliases() (toast.cache.Cache method), 19

C
Cache (class in toast.cache), 19
clear() (toast.cache.Cache method), 19
clear() (toast.dist.Data method), 22
Comm (class in toast.mpi), 23
comm (toast.dist.Data attribute), 22
comm_group (toast.mpi.Comm attribute), 23
comm_rank (toast.mpi.Comm attribute), 23
comm_world (toast.mpi.Comm attribute), 23
COMMON_FLAG_NAME (toast.tod.TOD attribute), 12
create() (toast.cache.Cache method), 19
critical() (toast.utils.Logger method), 32
current_threads() (toast.utils.Environment

method), 31

D
Data (class in toast.dist), 22
debug() (toast.utils.Logger method), 32
destroy() (toast.cache.Cache method), 19
detectors (toast.tod.Noise attribute), 21
detectors (toast.tod.TOD attribute), 12
detindx (toast.tod.TOD attribute), 12
detoffset() (toast.tod.TOD method), 12
dist_chunks (toast.tod.TOD attribute), 12
dist_samples (toast.tod.TOD attribute), 12

E
Environment (class in toast.utils), 31
error() (toast.utils.Logger method), 32
exists() (toast.cache.Cache method), 20

F
FLAG_NAME (toast.tod.TOD attribute), 12
freq() (toast.tod.Noise method), 21

function_timers() (toast.utils.Environment
method), 31

G
get() (toast.utils.Environment method), 31
get() (toast.utils.Logger method), 32
grid_comm_col (toast.tod.TOD attribute), 13
grid_comm_row (toast.tod.TOD attribute), 13
grid_ranks (toast.tod.TOD attribute), 13
grid_size (toast.tod.TOD attribute), 13
group (toast.mpi.Comm attribute), 23
group_rank (toast.mpi.Comm attribute), 23
group_size (toast.mpi.Comm attribute), 23

H
HWP_ANGLE_NAME (toast.tod.TOD attribute), 12

I
index() (toast.tod.Noise method), 21
info() (toast.dist.Data method), 22
info() (toast.utils.Logger method), 32

K
keys (toast.tod.Noise attribute), 21
keys() (toast.cache.Cache method), 20

L
local_chunks (toast.tod.TOD attribute), 13
local_common_flags() (toast.tod.TOD method),

13
local_dets (toast.tod.TOD attribute), 13
local_flags() (toast.tod.TOD method), 13
local_hwp_angle() (toast.tod.TOD method), 13
local_intervals() (toast.tod.TOD method), 13
local_pointing() (toast.tod.TOD method), 14
local_position() (toast.tod.TOD method), 14
local_samples (toast.tod.TOD attribute), 14
local_signal() (toast.tod.TOD method), 14
local_times() (toast.tod.TOD method), 14

39

TOAST Documentation, Release 2.3.4

local_velocity() (toast.tod.TOD method), 14
log_level() (toast.utils.Environment method), 31
Logger (class in toast.utils), 32

M
max_threads() (toast.utils.Environment method), 31
mpicomm (toast.tod.TOD attribute), 14
multiply_invntt() (toast.tod.Noise method), 21
multiply_ntt() (toast.tod.Noise method), 21

N
ngroups (toast.mpi.Comm attribute), 23
Noise (class in toast.tod), 20

O
obs (toast.dist.Data attribute), 22
Operator (class in toast), 27

P
POINTING_NAME (toast.tod.TOD attribute), 12
POSITION_NAME (toast.tod.TOD attribute), 12
psd() (toast.tod.Noise method), 21
put() (toast.cache.Cache method), 20

R
rate() (toast.tod.Noise method), 22
read() (toast.tod.TOD method), 15
read_boresight() (toast.tod.TOD method), 15
read_boresight_azel() (toast.tod.TOD method),

15
read_common_flags() (toast.tod.TOD method), 15
read_flags() (toast.tod.TOD method), 15
read_hwp_angle() (toast.tod.TOD method), 16
read_pntg() (toast.tod.TOD method), 16
read_position() (toast.tod.TOD method), 16
read_times() (toast.tod.TOD method), 16
read_velocity() (toast.tod.TOD method), 16
reference() (toast.cache.Cache method), 20
report() (toast.cache.Cache method), 20
rng_dist_uint64() (in module toast._libtoast), 33

S
set_log_level() (toast.utils.Environment method),

31
set_threads() (toast.utils.Environment method), 32
SIGNAL_NAME (toast.tod.TOD attribute), 12
signals() (toast.utils.Environment method), 32
split() (toast.dist.Data method), 23

T
TIMESTAMP_NAME (toast.tod.TOD attribute), 12
TOD (class in toast.tod), 11

tod_buffer_length() (toast.utils.Environment
method), 32

total_chunks (toast.tod.TOD attribute), 17
total_samples (toast.tod.TOD attribute), 17

U
use_mpi() (toast.utils.Environment method), 32

V
VELOCITY_NAME (toast.tod.TOD attribute), 12
version() (toast.utils.Environment method), 32
vsin() (in module toast.utils), 33

W
warning() (toast.utils.Logger method), 33
weight() (toast.tod.Noise method), 22
world_rank (toast.mpi.Comm attribute), 24
world_size (toast.mpi.Comm attribute), 24
write() (toast.tod.TOD method), 17
write_boresight() (toast.tod.TOD method), 17
write_boresight_azel() (toast.tod.TOD

method), 17
write_common_flags() (toast.tod.TOD method),

17
write_flags() (toast.tod.TOD method), 18
write_hwp_angle() (toast.tod.TOD method), 18
write_pntg() (toast.tod.TOD method), 18
write_position() (toast.tod.TOD method), 18
write_times() (toast.tod.TOD method), 18
write_velocity() (toast.tod.TOD method), 18

40 Index

	Introduction
	Support for Specific Experiments

	Installation
	User Installation
	Developer Installation
	Testing the Installation
	Building the Documentation

	Data Model
	Data Distribution

	Pipelines
	Example: Simple Satellite Simulation

	Utilities
	Environment Control
	Logging
	Vector Math Operations
	Random Number Generation

	Using TOAST at NERSC
	Module Files
	Loading the Software
	Installing TOAST (Optional)

	Indices and tables
	Index

